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The distribution of spatial domain structures originated during one- and three-dimensional Poisson-Voronoi
transformations are computed analytically extending the recently obtained results for the two-dimensional case.
The presented method gives a full description of the developed microstructure and is valid for tessellations of
any dimensionality. The temporal and spatial dependences of the domain structure are completely discrimi-
nated and separated, showing the existence of geometric configurations independent of time. A single compu-
tation of the probability distribution of these geometric configurations allows us to calculate the total free-
boundary and size probability distributions at any desired time. The obtained results show full agreement with
stochastic simulations and reproduce completely the previously existing partial results. A discussion about the
potential applications of the method to the calculation of other geometrical properties and the characteristics of
the final static structure leading to a Gamma distribution of sizes is also presented.

DOI: 10.1103/PhysRevE.78.021110 PACS number�s�: 02.50.Ey, 05.70.Fh, 81.30.�t

I. INTRODUCTION

Partition of space in separate domains giving rise to a
tessellation is common in many physical systems. In such
systems, the geometrical properties of the domain structure
determine most of the macroscopic properties and influence
the posterior dynamics and evolution of the system. Grain
microstructure in metals, cellular structure in granular mate-
rials or foams and the domain structure of magnetic materials
are some typical examples of these kind of systems. In this
work we analyze the domain structure generated during a
Poisson-Voronoi �PV� nucleation and growth transformation.
In a PV transformation, a set of randomly distributed nucle-
ation points starts growing simultaneously and isotropically
occupying the untransformed space. The collision of two
growing domains defines a static boundary and the two do-
mains remain distinguishable. The initial state of the system
is a random point distribution of nucleation sites, while the
final stage—when all the untransformed space is
occupied—is a Poisson-Voronoi cellular network or tessella-
tion �1,2�. In between, the system consists of new phase do-
mains partly in contact with each other and surrounded by
untransformed regions.

In a one-dimensional space, the domains are line seg-
ments which progressively occupy the adjacent untrans-
formed space at both sides of the segment. After colliding
with other domains at both sides, these monodimensional
domains remain static. In two- and three-dimensional spaces,
the initial circular or spherical growing domains become pro-
gressively transformed into polygonal or polyhedral cells be-
cause of the collisions with their neighbors. Figures 1 and 2

show the configuration of a given region at three different
stages during a one and a two-dimensional PV transforma-
tions, respectively. This type of transformation is also re-
ferred to as transformation with saturation of nucleation sites
�3–5�, growth of preexisting nuclei �6�, cell model �7,8�, or
crystallization with simultaneous nucleation �9�.

A PV transformation is completely determined by two
parameters, namely, the intensity of the Poisson process �,
that is the density of initial seeds or nucleation points, and
the growth rate of the domains u; these parameters determine
the kinetics and the domain structure at any time t. Choosing
the time origin t=0 at the beginning of the transformation,
the space occupied by a domain without collisions at time t is
KD�ut�D, where D is the dimension of the system and

KD =
2�D/2

D��D/2�
. �1�

Then the transformed space fraction x�t� is obtained from

x�t� = 1 − exp�− �KD�ut�D� �2�

which is the well-known Avrami or Kolmogorov-Johnson
and Mehl-Avrami �KJMA� equation for this kind of transfor-
mation �10–12�. The evolution of x�t� for D=1 and 2 is also
depicted in Figs. 1 and 2. As all domains have the same
growth rate, the spatial configuration at a given value of x�t�
is independent of the value of u. For the sake of simplicity, in
this work we will consider u=1; the results for any other
value of the growth rate are easily obtained with the appro-
priate time scaling.

At the end of the transformation, this means when x�t�
→1 and t→�, the whole space is occupied by static do-
mains forming a PV tessellation, whose geometrical features
have been widely studied �2,13–15�. For instance, the prob-*eloi.pineda@upc.edu; URL: http://mie.esab.upc.es/eloi
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ability density function �PDF� of domain sizes of a PV tes-
sellation is known to be a Gamma probability function

f�a� =
�����

����
a�−1 exp�− ��a� , �3�

where the size a is defined as the length, area, or volume
occupied by a domain and the exponent � is found to be 2,
3.575, and 5.586 for D=1, 2, and 3, respectively �16�. These
results are analytically deduced for the one-dimensional case
�7,17�, but it has not been mathematically proved for D�1.
For D�1, the validity of the Gamma distribution has been
checked against stochastic simulations by fitting the numeri-
cal values of the exponent � �13,15,16�.

The temporal evolution of the domain size distribution in
a one-dimensional PV transformation was completely de-
scribed in Ref. �17�. In a one-dimensional system, the do-
mains can be treated as growing line segments which can be
in just three collision states: �a� no-collisions, �b� collision at
one side, �c� collisions at each side. This simplicity of the
collision process facilitates an analytical treatment that gives
a complete description of the domain structure at any time t
during the transformation. The PDF of other characteristics
such as the length of untransformed gaps or the size of do-
main aggregates was also derived by Schulze �17�.

Finding an explicit solution for the temporal evolution of
the domain structure for D�1 remains an unsolved problem.
There is an intrinsic topological reason for this, the number
of growth directions in one-dimensional systems is finite,
while it becomes infinite in higher dimensional systems. This
prevents the extension of the method used in D=1 to higher
dimensions. Only very recently �18,19� have the authors pre-
sented an analytical method for calculating the PDF of any

geometrical characteristic of the domains at any finite time t
during a PV transformation. This was possible by revealing
the underlying self-similarity of the growth-and-impinge-
ment process along the transformation. By this approach the
deduced analytical integral expressions can be calculated nu-
merically to any desired accuracy, and results for the domain
size and domain free boundary distributions in a two-
dimensional transformation were presented. Furthermore,
one of the main theoretical results of such a method is the
fact that it is fully independent of the dimensionality of the
space under consideration. We show that in this paper by
presenting a detailed calculation for the cases of D=1 and
D=3.

In Sec. II we recapitulate the method and we generalize it
to deal with PV transformations in spaces of any dimension.
In Sec. III we present the application of the method to a
one-dimensional PV transformation. Although the total size
distribution for the D=1 case was previously calculated, the
derivation presented here completes the generalization of the
method. The explicit results obtained for the one-
dimensional system provide additional information of the
spatial configuration and they allow a direct comparison with
D�1 systems, this being particularly useful in the discus-
sions given in following sections. In Sec. IV we extent the
calculation method to D�1 and to an arbitrary domain prop-
erty. Computations of the free boundary and size of the do-
mains are presented in detail for the three-dimensional case,
which is a case with high physical significance. Section V is
devoted to the final static structure, the potentiality of the
presented calculation method to provide a derivation of the
Gamma distribution of sizes observed in PV tessellations is
discussed. The similarities between the D=1 results, from
which the Gamma distribution is analytically obtained, and
the D=2 and 3 computations are presented and discussed.
Finally, in Sec. VI we summarize the main results of the
work.
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FIG. 1. Evolution of the transformed fraction and local spatial
configuration at three different stages during a D=1 PV trans-
formation.
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FIG. 2. Evolution of the transformed fraction and local spatial
configuration at three different stages during a D=2 PV trans-
formation.
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II. TIME-INVARIANT PROBABILITY DISTRIBUTIONS
OF GEOMETRIC CONFIGURATIONS

The method presented in Ref. �18� is based on the calcu-
lation of the time-invariant probabilities of geometric con-
figurations for domains with a certain number of extended
collisions. Considering, without loss of generality, u=1, the
number k of extended collisions of a domain with nucleation
point O is defined as the number of neighboring nucleation
points Oi within a distance 2t of O. This is equal to the
number of neighboring domains that would impinge with the
domain if there was no screening by previous collisions.
Considering a Poisson point distribution with density � in a
space of dimension D, the probability of a domain to have k
extended collisions at time t is given by

Tk�t� =
�KD2DtD��k exp�− KD2DtD��

k!
, �4�

which is the probability of finding exactly k points within a
region of volume KD�2t�D. At t=0 all the domains have k
=0 collisions, then T0�0�=1 and Tk�0�=0 for any k�0. As
the transformation proceeds, each Tk�t� function increases
until reaching a maximum value and then diminishes to-
wards zero. A graphical representation of the Tk�t� functions
for D=2 was given in Ref. �19�.

Following the procedure detailed in Refs. �18,19�, the col-
lision configuration of a domain can be defined by the posi-
tions �Oi� �i=1, . . . ,k� of the k surrounding nucleation points
nearer than a distance 2t. In a D=1 system these positions
are determined just by the distances �2ti between Oi and O,
where ti is the collision time between the two domains. In
D=2 and 3 spaces these positions can be expressed as Oi
= �2ti ,	i� and Oi= �2ti ,	i ,
i� in polar coordinates centered at
the domain origin. Using a normalization li= ti / t of the col-
lision times, the collision configuration of a certain domain
can be defined by the set �li�, �li ,	i� or �li ,	i ,
i� for D=1, 2,
or 3, respectively. The probability of finding a domain with a
certain collision configuration at time t is found multiplying
the probability �dVDi of finding a nucleation point within
dVDi and the probability exp�−KD2DtD�� of finding no other
nucleation point within the KD�2t�D region, this probability
can be written as

Pk�O1, . . . ,Ok,t� = Tk�t�
k!

KD
�
i=1

k

dVDi, �5�

where dVDi is the volume differential element at position Oi.
For the cases of D=1, D=2, and D=3 we have dV1i=2dli,
dV2i= lidlid	i and dV3i= li

2 sin�	i�dlid	id
i. The essential
point here comes from the fact that the probability of Eq. �5�
is composed by two factors, one only dependent on time and
the other only dependent on the collision configuration. This
result implies that the evolution of the domain structure in a
PV transformation can be interpreted as a sum of domain k
populations with time invariant normalized geometric prop-
erties, each one of this populations containing a fraction of
domains at time t given by Eq. �4�. In the above expression
we implicitly assumed a temporal order for the collision
times, that is li−1� li. If this temporal order above chosen is

not considered the right-hand side �RHS� of Eq. �5� should
be divided by k!.

If the probability of finding a specific geometrical con-
figuration among the domains with given k is time invariant,
then the PDF of any geometrical property of these domains
must be also time invariant. For a certain geometric charac-
teristic, the calculation of these time-invariant functions will
allow the construction of the overall PDF at any time t just
by adding the contributions Tk�t� of each k population. In the
following sections this is carried out for the free boundary
and for the size of the domains. Finally, the explicit expres-
sions for the probability of a certain collision configuration
of a domain with k extended collisions, as they will be used
in the following sections, can be written as

k!�
i=1

k

dli for D = 1,

k!

�k�
i=1

k

lidlid	i for D = 2,

k!� 3

4�
	k

�
i=1

k

li
2 sin�	i�dlid	id
i for D = 3 �6�

which corresponds to the time-invariant term on the RHS of
Eq. �5� for the specific cases of one, two, and three dimen-
sions.

III. RESULTS FOR D=1

A. Temporal evolution of the free boundary distribution

The free boundary fraction b of a domain is defined as the
fraction of the domain boundary in contact with untrans-
formed space. In the case of a D=1 PV transformation, the
free boundary fraction becomes a discrete variable having
only three possible values: b=1 �domains without colli-
sions�, b=1 /2 �domains with collisions in one side�, and b
=0 �domains with collisions in each side�. Thanks to this
simplicity, the probability Qk,b of being in one of these three
cases for a domain with k extended collisions can be easily
calculated.

For k=0 and k=1 all the domains have b=1 and b=1 /2,
respectively, and so

Q0,1 = 1, Q0,1/2 = 0, Q0,0 = 0 �7�

and

Q1,1 = 0, Q1,1/2 = 1, Q1,0 = 0. �8�

After that, each new extended collision has the same prob-
ability of being at either side of the domain. The domains
with collisions in just one side maintain b=1 /2 while the
domains with collisions in both sides have b=0. This leads to
the following general expression:

Qk,1 = 0, Qk,1/2 = �1

2
	k−1

, Qk,0 = 1 − �1

2
	k−1

�9�

for k�0. These expressions give the fraction of domains in
each of the three possible boundary states for the population
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of domains with k extended collisions, these probabilities are
time invariant as expected. Therefore, the overall probability
Qb�t� of finding a domain in one of the three states at a
certain time t can be easily obtained adding the contributions
of each k population, that is,

Qb�t� = 

k=0

�

Qk,bTk�t� . �10�

Substituting the Tk�t� expression of Eq. �4� in the above
equation we obtain

Q1�t� = exp�− 4�t� ,

Q1/2�t� = 2�1 − exp�− 2�t��exp�− 2�t� ,

Q0�t� = �1 − exp�− 2�t��2. �11�

The previous expressions can be derived using other ar-
guments, for instance, they can be expressed in function of
the transformed fraction x�t�=1−exp�−2�t� as

Q1�t� = �1 − x�t��2, Q1/2�t� = 2�1 − x�t��x�t� ,

Q0�t� = x�t�2, �12�

where it becomes obvious that Q1�t�, Q0�t�, and Q1/2�t� are,
respectively, the probability of two randomly chosen points
to be found both in untransformed space, both in transformed
space and each one in a different state. The simplicity of the
collision process in a D=1 transformation makes the deriva-
tion of the above probabilities possible by many different
ways. The derivation in terms of extended collisions is pre-
sented here for completeness.

B. Temporal evolution of the size distribution

In a D=1 PV transformation the size of a domain corre-
sponds to its length a. We define here the normalized size of
a domain as

s =
a

2t
, �13�

where 2t is the size of a domain without any collision block-
ing its growth. These size s is completely determined by the
particular collision sequence of the domain �li�. Therefore,
the time-invariant size PDF gk�s� for domains with a given k
can be calculated using the probability for a certain collision
sequence given by Eq. �6� and integrating over all the pos-
sible sequences

gk�s�ds = k!�
l1=0

1

¯ �
lk=lk−1

1

��s − Sk�l1, . . . ,lk���
i=1

k

dli,

�14�

where ��¯� is the Dirac delta function and Sk�l1 , . . . , lk� is a
function which calculates s for a particular collision se-
quence �li�.

The function Sk�l1 , . . . , lk� can be explicitly obtained in
D=1. For domains with k=0 and k=1 it is obvious that

S0 = 1, S1�l1� =
1 + l1

2
. �15�

For k�0, a discussion similar to the one in the free-
boundary calculation leads to

Sk�l1, . . . ,lk� = �
1 + l1

2
, with probability �1

2
	k−1

,

l1 + li

2
, with probability �1

2
	i−1

. 
�16�

In order to clarify the origin of the previous expression
the derivations for k=2 and k=3 will be detailed as ex-
amples. For a domain with k=2 and a certain �l1 , l2� with
l1� l2, there is an equal probability of having the two ex-
tended collisions in the same side or in different sides. In the
former case the growth is stopped just in one side of the
domain at the first collision time, and the normalized domain
size is then S2�l1 , l2�=

1+l1

2 . In the latter case the growth is
stopped at both sides of the domain and the size is S2=

l1+l2

2 .
For k=3 and a certain �l1 , l2 , l3� with l1� l2� l3, there is a
1 /4 probability of having all the collisions at the same side
and so S3�l1 , l2 , l3�=

1+l1

2 , there is a 1 /2 probability of having
l1 and l2 at different sides and so S3�l1 , l2 , l3�=

l1+l2

2 , and there
is a 1 /4 probability of having the first and the second colli-
sion at the same side and the third one in the opposite side,
this giving S3�l1 , l2 , l3�=

l1+l3

2 . Extending this reasoning to
larger k numbers the above general expression for
Sk�l1 , . . . , lk� is obtained for any k�0.

Now, the functions gk�s� can be obtained calculating the
integration in Eq. �14�. The first size PDF corresponding to
k=0 is then

g0�s� = ��s − 1� . �17�

For k�0 the substitution of Eq. �16� in Eq. �14� leads to

gk�s�ds = k!�
l1=0

1

¯ �
lk=lk−1

1 ��1

2
	k−1

��s −
1 + l1

2
	

+ 

i=2

k �1

2
	i−1

��s −
l1 + li

2
	��

i=1

k

dli. �18�

The integration of the previous equation gives

gk�s� = �k�k − 1�s�1 − s�k−2 for s �
1

2
,

k�k + 1��1 − s�k−1 for
1

2
� s � 1. �19�

A detailed derivation of this result is given in Appendix A.
Figure 3 shows the gk�s� functions for k=1, 2, 3, 4, and 5.

As shown in Fig. 3 the time-invariant size probability density
functions are strickingly simple. Using the expressions ob-
tained for the gk�s� functions, the total PDF of normalized
sizes can be obtained as
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gtotal�s,t� = 

k=0

�

gk�s�Tk�t� , �20�

where the time evolution of the overall system is obtained as
a summation of the time-invariant functions, weighted by the
fraction of domains with certain k at certain time t given by
Eq. �4�. Figure 4 shows the gtotal�s , t� when the overall trans-
formed fraction is x�t�=0.6. At this stage of the transforma-
tion the domains with k=0 constitute the 16% of all the
domains, and 99% of the domains have k5. The total size
probability density function of Fig. 4 was computed adding
the contributions of the gk�s� distributions with k ranging

from 0 to 5, which are also shown in the figure. The validity
of the obtanied results was tested by comparing to stochastic
simulations. An unidimensional array of 214 positions was
progressively covered by approximately 330 seeds randomly
spread. Bars in Fig. 4 correspond to the average of 100 of
these simulations, showing full agreement with the computed
gtotal�s , t�. It must be noted that the height of the bar at s=1,
that is the bin corresponding to the domains without colli-
sions, has been artificially reduced in order to improve the
appraising of the details of the rest of the distribution. The
probability density function at s=1 is a Dirac � function, and
so the height of the bar in a histogram depends on the bin
size.

The number of gk�s� distributions needed to compute the
total PDF depends on the time t and the desired accuracy of
the calculation. However, in the case of D=1 an explicit
result for the total size PDF can be obtained from Eq. �20�.
Using Eqs. �4�, �17�, and �19�, the infinite series of Eq. �20�
can be analytically solved. Then, from the normalized size
PDF gtotal�s , t� the total size PDF fD=1�a , t� is obtained using
the variable change in Eq. �13� giving

fD=1�a,t� = gtotal�s,t�
ds

da

= exp�− 4�t���a − 2t� + exp�− 2�a�

��2��2 + 4�t − 2�a�H�a − t� + 4�2aH�t − a�� ,

�21�

where H�¯� is the Heaviside step function. The first term in
the RHS of the equation corresponds to the PDF of domains
with no collisions, all of them with a=2t corresponding to
the space covered by their two moving boundaries at time t.
The second term corresponds to the domains with one colli-
sion and the third term corresponds to the static distribution
of domains with both sides blocked. This last term also cor-
responds to the final size PDF when t→�, which is the
Gamma probability function of Eq. �3� for D=1. The evolu-
tion of the total size PDF is depicted in Fig. 5, the final
Gamma probability function is shown with a dashed line for
reference. The emmergence of the final Gamma distribution
as the transformation advances and more and more domains
become completely blocked will be further discussed below.

IV. RESULTS FOR D=3

In a three-dimensional PV transformation a collision con-
figuration �li ,	i ,
i� �i=1, . . . ,k� determines unequivocally
any geometrical property of the domain. Likewise with the
previous development for the domain size in a D=1 space,
we can define a function Yk��li ,	i ,
i�� which calculates a
given geometrical property y for a domain with collision
configuration �li ,	i ,
i�. Then, the time-invariant PDF of the
y property for the domains with a certain value of k can be
calculated as
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FIG. 3. �Color online� Time-invariant size probability density
functions of domains with k extended collisions in a D=1 PV trans-
formation: k=1 �solid blue line�, k=2 �dashed green line�, k=3
�dot-dash red line�, k=4 �dotted yellow line�, and k=5 �dot-dot-
dash magenta line�.
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FIG. 4. �Color online� Total domain-size distribution in a D=1
PV transformation at a transformed fraction x�t�=0.6. Calculated
size distribution �thick line� compared with the results of a stochas-
tic simulation �bars�. The contribution of each of the gk�s� functions
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gk
Y�y�dy = k!� 3

4�
	k�

l1=0

1 �
	1=0

� �

1=0

2�

¯

�
lk=lk−1

1 �
	k=0

� �

k=0

2�

��y − Yk��li,	i,
i���

��
i=1

k

li
2 sin�	i�dlid	id
i. �22�

And now, the total PDF of the y property at time t can be
obtained adding the contributions of the k populations, this is

gtotal
Y �y,t� = 


k=0

�

gk
Y�y�Tk�t� . �23�

The calculation of the gk
Y�y� functions is more or less

complex depending on the geometrical property; in some
cases the analytical form of the gk

Y�y� functions can be ob-
tained �19�, while in other cases a numerical integration of
Eq. �22� is required. At low values of the transformed frac-
tion x�t�, that is at the early stages of the transformation, the
number of k distributions required for the calculation of the
total PDF is relatively low, but it increases as the transfor-
mation proceeds. Figure 6 shows the value of k0.99�t� which
stands for the minimum number of k needed to cover at least
99% of the total number of domains. As it is observed, the
calculation of the total distribution of a certain geometric
property at t→� using the present method becomes imprac-
tical because it may require the numerical calculation of an

infinite number of gk
Y�y� functions. However, at any finite

time t, the total PDF can be calculated to arbitrary accuracy
adding a finite number of functions and, as it is observed in
Fig. 6, the number of k populations needed for the calcula-
tion increases abruptly only at values of x�t� very close to 1
when the overall geometrical configuration is practically
static. This implies that even the final configuration at x�t�
=1 can be approximated to any desired accuracy from the
configuration obtained at x�t��1 using a finite number of
gk

Y�y� functions.

A. Temporal evolution of the free boundary distribution

The free boundary fraction b of a domain is now defined
as the fraction of the original spherical boundary that is in
contact with untransformed space, this is equal to the frac-
tion of solid angle still not screened by collisions with neigh-
boring domains. In a PV transformation all the domains start
growing simultaneously with equal growth velocity, then the
collision between two domains can be interpreted as the in-
tersection of two equally sized spheres of normalized radius
1 at distance li from their centers. This intersection occupies
a fraction

�1−li�
2 of solid angle; however, in order to compute

the free solid angle remaining after k extended collisions at
positions �li ,	i ,
i� �i=1, . . . ,k�, the overlaps between differ-
ent collisions should be taken into account. In order to do
this computation we define the function

Ci�	,
,li,	i,
i� = H�d2 − 1� �24�

with

d2 = �sin 	 cos 
 − 2li sin 	i cos 
i�2

+ �sin 	 sin 
 − 2li sin 	i sin 
i�2 + �cos 	 − 2li cos 	i�2,

�25�

where d is the distance between a boundary point �1,	 ,
�
and the neighboring nucleation point Oi= �2li ,	i ,
i�. This
bivaluated function gives a value of 1 for any solid angle not
occupied by the ith extended collision, that is with d�1, and
a value of 0 otherwise. With the aid of Ci, the function Bk
which gives the free boundary fraction for a given collision
configuration can be written as

0 1 2 3 4
Domain length a (units of ρ-1)

0

0.5

x(t)=1
0

1

Pr
ob

ab
ili

ty
de

ns
ity

0

1

2

3

x(t)=0.8

x(t)=0.4
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Bk�l1,	1,
1, . . . ,lk,	k,
k�

=
1

4�
�

	=0

� �

=0

2�

�
i=1

k

Ci�	,
,li,	i,
i�sin�	�d	d
 .

�26�

For k=1, the function B1�l1 ,	1 ,
1� reads

B1�l1,	1,
1� =
1 + l1

2
. �27�

With the definition of the Bk functions the integration of
Eq. �22� gives the time-invariant free boundary probability
density functions gk

B�b�. Figure 7 shows the result of this
integration for different values of k ranging from 1 to 20. The
function corresponding to k=0 is obviously

g0
B�b� = ��b − 1� , �28�

for k=1 the integration of Eq. �22� reduces to a variable
change b=

1+l1

2 giving

g1
B�b� = 6�2b − 1�2H�b −

1

2
	 , �29�

and the gk
B�b� functions with k�1 have been calculated by

Monte Carlo numerical integration ensuring a relative error
lower than 10−3. The mean value of each time invariant gk

B�b�
function, this is the mean occupied solid angle in a domain
with k extended collisions, must also be time invariant and
can be independently calculated �19�. Because of the random
distribution of nucleation points, all the angular positions of
the neighboring domains are equiprobable. Bearing in mind
that each collision occupies a fraction

�1−li�
2 of the free bound-

ary, the average free boundary fraction of a domain with a set
of collision times �li� is

b̄k��li�� = �
i=1

k
�1 + li�

2
, �30�

and the mean value of b for the population of domains with
k extended collisions is obtained to be

b̄k = �
0

1

bgk
B�b�db = k!�

l1=0

1

¯ �
lk=lk−1

1

b̄k��li���
i=1

k

li
2dli

= �8 − 1

8
	k

. �31�

The mean values b̄k of the normalized probability functions
are indicated in Fig. 7.

Recalling Eq. �31�, it confirms the result obtained in Ref.
�18� that the mean free boundary of domains after k extended
collisions is

b̄k = �2D − 1

2D 	k

, �32�

which phisically means that, on average, the free boundary
decreases by a factor 2−D after each extended collision.
Given that the number of orthogonal directions in a
D-dimensional space is 2D and the number of sectors di-
vided by these orthogonal directions is 2D, it appears that an
average of one sector �one quadrant for D=2 or one octant
for D=3� is occluded by each extended collision, and not an
orthogonal growth direction as it may intuitively appear.

Now, from Eq. �23�, the total PDF gtotal
B �b , t� is calculated

adding the corresponding contributions of the k domains at
time t. Figure 8 shows the evolution of gtotal

B �b , t� at three
different stages during the transformation. As all the domains
have b=0 when x�t�→1, the function gtotal

B �b , t� tends to a
delta function ��b−0� at the final stages of the transforma-
tion. In the calculations presented in Fig. 8, the total PDF
was obtained using the contributions of the gk

B�b� functions
with k ranging from 0 to 20. At x�t�=0.75 the domains with
k20 represent more than 99% of the total.
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B. Temporal evolution of the size distribution

The calculation of the size PDF in D=3 is performed
following the same steps than the free boundary fraction de-
velopment of the previous section. First of all we define the
normalized size of a domain

s =
3a

4�t3 , �33�

where a is the volume occupied by the domain at time t.
Using the function Ci defined in Eqs. �24� and �25� the cal-
culation of the size of a domain with a certain collision con-
figuration can be obtained by

Sk�l1,	1,
1, . . . ,lk,	k,
k�

=
3

4�
�

r=0

1 �
	=0

� �

=0

2�

�
i=1

k

Ci�	,
,
li

r
,	i,
i	r2 sin�	�drd	d
 ,

�34�

noting that Ci�	 ,
 ,
li

r ,	i ,
i� is equal to 1 for any point
�r ,	 ,
� nearer to the nucleation point of the domain than to
the neighboring nucleation point Oi= �2li ,	i ,
i�. Now, the
integration of Eq. �22� gives the time invariant functions
gk

S�s� depicted in Fig. 9. The probability density function
corresponding to k=0 is again a delta function

g0
S�s� = ��s − 1� , �35�

and the integration of Eq. �22� for k=1 is equivalent to the
variable change

s = S1�l1,	1,
1� =
1

2
�1 +

l1

2
�3 − l1

2�	 �36�

this leading to

g1
S�s� = �2 sin� arccos�2s − 1� + �

3
�

�s − s2
− 4�H�s −

1

2
	 .

�37�

As in the free boundary case, the gk
S�s� functions with k�1

have been computed by numerical integration of Eq. �22�.
Similarly to the average free-boundary fraction in the pre-

vious section, the mean normalized size of the domains with
a given number k of extended collisions can be explicitly
obtained giving

s̄k = �
0

1

sgk
S�s�ds =

8

k + 1
�1 −

7k+1

8k+1	 . �38�

This result is derived in Appendix B, and it can be extended
to any dimension D giving a value of

s̄k =
2D

k + 1
�1 − �2D − 1

2D 	k+1� . �39�

The values of s̄k corresponding to the plotted gk
S�s� functions

are also shown in Fig. 9. All the gk
S�s� functions obtained by

numerical integration of Eq. �22� satisfy this mean value, this
result ratifying the correctness of the computation.

Finally, the overall PDF gtotal
S �s , t� is calculated from Eq.

�23� and the total PDF in terms of the volume a instead of
the normalized size s can be obtained using the variable
change in Eq. �33�, this is

fD=3�a,t� = gtotal
S �s,t�

ds

da
. �40�

The results obtained for fD=3�a , t� at x�t�=0.25, 0.5, and 0.75
are presented in Fig. 10. As in the one-dimensional case, the
final static Gamma distribution is progressively obtained as
more and more domains become completely blocked during
the transformation. Similarly to the one- and two-
dimensional cases �19�, the analytical results obtained in this
work have been checked against stochastic simulations of the
system checking the correctness of the calculation. Details of
these stochastic simulations can be found in Refs. �6,16�.

V. ORIGIN OF THE FINAL GAMMA SIZE
DISTRIBUTION

The emmergence of a static Gamma distribution of sizes
at the end of a PV transformation is not a surprising fact, the
Gamma distribution is linked to Poisson processes by defi-
nition. Considering a Poisson process with rate �, the prob-
ability of the hth Poisson event occurring at time t is given
by a Gamma distribution with probability density function

p�h,t� =
���t�h−1

�h − 1�!
exp�− �t� �41�

which is equivalent to Eq. �3� with �=h and a mean value
�−1=��−1. Therefore, the final size distribution of a PV trans-
formation might be considered as the probability of finding a
domain with a certain set of collisions at distances �or times�
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=1 to k=20 in a D=3 PV transformation. Position of the mean
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distributed Poisson-like. This is straightforwardly seen for
the one-dimensional system, where each domain grows from
its nucleation point in two branches occupying, respectively,
the left- and the right-hand side untransformed spaces. The
growth of these branches is stopped after one collision at
distance t with a neighbouring domain, this neighbor having
a nucleation point at distance 2t. Hence, such collisions have
a Poisson probability exp�−2�t� with rate �=2� of occurring
at time t and the probability of having the first collision in
one of the branches at time t is given by

p�1,t� = 2� exp�− 2�t� . �42�

Then, the probability of having a domain branch with final
length aj = t is given by

fbranch�aj� = 2� exp�− 2�aj� �43�

and the probability of having a domain �formed by two
branches� with final size a=a1+a2 is given by the convolu-
tion of two of these functions

fdomain�a� = �
0

� �
0

�

fbranch�a1�fbranch�a2���a1 + a2 − a�

= 4�2a exp�− 2�a� �44�

which is the Gamma probability function with �=2 corre-
sponding to a one-dimensional PV tessellation.

For D=2 and D=3 systems a rude similar approach can
be attempted. Let us consider the growth of a domain as the
growth of n branches each one occupying a fraction of angle
�D=2� or solid angle �D=3�, the growth of each branch will

stop after colliding once in the corresponding sector. In order
to follow with this approach we assume each branch occu-
pying an equal sector

DKD

n �2�
n for D=2 and 4�

n for D=3�. In
each one of these sectors, the probability of having the first
collision with a neighbouring nuclei at time t is given by

DKD2DtD−1�

n
exp�−

KD2DtD�

n
	 �45�

which is the probability of finding a neighboring nucleation
point at distance 2t inside the sector, multiplied by the prob-
ability of finding no other nucleus at smaller distance. Hence,
the probability function of having a branch occupying an
area aj =

�t2

n for D=2 or a volume aj =
4�t3

3n for D=3 is given
by

fbranch�aj� = 2D� exp�− 2D�aj� �46�

and the probability of a domain to have a size a=a1+ ¯

+an is obtained if we convolute n of these probability func-
tions obtaining

fdomain�a� =
�2D��nan−1

�n − 1�!
exp�− 2D�a� . �47�

Restricting the possible size probability functions to func-
tions with expected value of �−1 we have that only n=4 and
n=8 for D=2 and D=3 are allowed, in which case the two
distributions become Gamma probability functions with �
=2D. It should be noted that this approach is inspired in Ref.
�15�. Here, however, the probability functions are con-
structed in function of the occupied space in each sector
instead of the collision distance, this allows a complete ana-
lytical treatment and extension to the D=3 case.

The actual size distribution of a PV tessellation have val-
ues of the exponent � different from 2D. Figure 11 shows the
comparison between the actual final Gamma size probability
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functions in PV transformations in D=2 and D=3 spaces
and the Gamma functions with �=4 and �=8 derived from
this approach, it is observed that the distributions with expo-
nent 2D have smaller dispersion around the mean value.
From the approach presented here, the value of the exponent
is related to the average number of first neighbors of a do-
main. In a PV tessellation the average number of real colli-
sions is 6 and 15.54 for D=2 and D=3, respectively �7�,
which are very different from the 2D collisions considered in
the approach. However, the average number of “full neigh-
bors,” defined as the number of neighboring nucleation
points that can be connected with the domain origin with a
straight line without crossing a third domain, is indeed 2D

�7�. Then, the structure can be interpreted as domains with an
average of 2D main collisions but with a large geometric
anisotropy produced by secondary collisions in the remain-
ing solid angle fraction not obstructed by full neighbors.
Contrary to the D=1 system, where all domains have exactly
two real collisions, for D�1 the number of possible real
collisions of a completely blocked domain goes from 3 �D
=2� or 4 �D=3� to infinity, implying a wide distribution of
probable domain geometries. This wider distribution of do-
main shapes produces a larger size dispersion around the
mean value, which implies a smaller exponent in the Gamma
distribution as its variance is given by �−1�−2.

From this approach, it may be argued that the presence of
Gamma size distributions in physical systems must have its
origin in a random distribution of nucleation points or initial
particle positions. In different systems, experimental distri-
butions of area or volume are fitted by statistical distributions
such as the Gauss, Gamma, and log normal �20�. If the struc-
ture is uniquely determined by a Poisson point process the
Gamma distribution appears, this is the case in different
types of phase transformations where the final structure is
completely dependent on the initial random distribution of
seeds �21,22�. When the structure is allowed to relax under
some particular dynamics the anisotropy of the domains is
generally reduced, this leading to different types of domain
size distributions. In coarsening structures driven by surface
tension, the unfavorable smallest domains disappear, the
structure coarsens but an invariant distribution of sizes ap-
pears. In many cases these structures produce an inverse ex-
ponential size distribution with larger size dispersion than the
Gamma distribution �23,24�, this larger dispersion is origi-
nated by the continuously growth and shrinkage of the favor-
able and unfavorable cells although the shape of the domains
is much more uniform than in a PV tessellation. These mi-
crostructures are typically observed during normal grain
growth in metallurgy �25� and soap bubble froths �24�.

In other cases, after some degree of relaxation the system
continues to present a Gamma distribution of sizes but with a
more uniform distribution of cell shapes and sizes than in a
PV tessellation. This seems to be the case in sphere packings
and some other granular materials �26,27�. In Ref. �26� the
topological parameters of the Voronoi cells found in uniform
sphere packing simulations with low density are very close
to the values of a PV tessellation. They found that the num-
ber of faces per cell NF and the surface cell area SC increase
when reducing packing density PD. For high packing densi-
ties, PD=0.605, they found NF=14.41 and SC=5.45ā2/3 �ā

being the mean cell volume�, while at PD=0.188 they found
NF=15.33 and SC=5.87ā2/3. It should be noted that values of
NF=15.54 and SC=5.82ā2/3 correspond to a PV tessellation
while NF=14 and SC=5.32ā2/3 correspond to an ordered
cube-octahedron structure �7�. Therefore, the structure
changes from being composed by highly asymmetric cells
with a large variance of sizes at low packing densities to a
more uniform and narrower Gaussian-like distribution at
high packing densities. In Ref. �27� they obtained Gamma-
like size distributions for the cell volumes of sphere packings
at all densities, these distributions have an exponent � that
decreases towards the value corresponding to a PV tessella-
tion ��=5.586� for low packing densities. Following the
present approach, the presence of Gamma-like size distribu-
tions in these systems may be interpreted as a signature of
the initial completely random distribution of sphere posi-
tions, the corresponding Voronoi cell structure becoming
more uniform �this means larger � values� as the sphere po-
sitions are accomodated to higher packing densities. An in-
teresting point in Ref. �27� is the reduction of the exponent
of the Gamma distributions when the increase in density
causes a transition towards a jammed state. From a pure
topological view, this reduction of the exponent may be due
to the continous relaxation of some parts of the structure
towards a more uniform and dense distribution of local en-
vironments while some other parts are arrested in lower den-
sity local configurations, this would increase the size disper-
sion around the mean value implying a reduction of the
exponent.

However, the validity of the Gamma distribution and the
values of the exponent � for D=2 and D=3 PV structures
remain as a semiempirical result. In this issue the compari-
son with the completely solvable D=1 case may give us
some clues. In Secs. III and IV we obtained that the Gamma
probability function appears adding the contributions of gk

S�s�
functions corresponding to totally blocked domains, this
means domains with s�1 /2 in the D=1 case. Inspecting Eq.
�19� we observe that these probability functions of normal-
ized sizes are Beta probability functions

��� + ��s�−1�1 − s��−1

��������
�48�

with parameters �=� and �=k−1. For large k numbers the
contribution of partially blocked domains, this means the s
�1 /2 part of the gk�s� functions, tends to disappear they
becoming pure Beta probability functions. For D=2 and D
=3 the same behavior is found for the gk

S�s� functions. Figure
12 shows the gk

S�s� functions computed numerically from
Eqs. �22� and �34� compared with Beta probability functions
with parameters

� = �, ��k� =
�k + 1��

2D�1 − �2D − 1

2D 	k+1� − � . �49�

The value of parameter ��k� is introduced in order to obtain
Beta probability functions with mean value equal to the
value of s̄k calculated in the previous section. It is observed
that the agreement between the calculated functions and the
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Beta functions is very good for large k numbers, in which the
gk

S�s� functions are expected to describe the size distribution
of mainly completely blocked domains. However, it should
be noted that the domain populations with k=10 �D=2� and
k=20 �D=3� extended collisions, which are the larger k
numbers shown in the figure, still have a significant propor-
tion of nonblocked domains. Therefore, it is expected that
the domains with k�1 will have domain size distributions
very well described by a Beta distribution. Furthermore, for
k�1 parameter ��k� can be reduced to ��k�= � �k+1�

2D −1��,
giving the value of �=k−1 found for the completely blocked
domains in D=1.

Now, we propose the normalized size distributions of
completely blocked domains with k extended collisions to be
Beta-like distributions that can be written as

gk
Blocked�s� =

���
�k + 1�

2D 	s�−1�1 − s���k+1�/2D−�−1

�������
�k + 1�

2D − �	 �50�

and then the Gamma probability function appears as



k=0

�

gk
Blocked�s�Tk�t�ds =

lim t→� �����

����
a�−1 exp�− ��a�da

�51�

which is the sum of Beta probability functions weighted by
the relative number of k domains at time t. Equation �51� can
be easily proved if �=2D, but it is found valid for any value
of � considering a sufficiently large time t. It should be noted

that at t→�, when the Gamma distribution is formed at the
end of the transformation, only domains with k�1 have sig-
nificant contributions to the total.

Similarly to the Gamma size distribution, the validity of
Beta distributions of normalized sizes for domains with k
extended collisions is at present a heuristic result. The calcu-
lation, by means of the method presented in this article, of
the distribution of sizes for completely blocked domains as
well as the distributions of other geometrical parameters
such as the number of faces, edges, or “full neighbors” may
cast light into the origin of the dispersion of sizes and shapes
arising from the random distribution of points and the value
of the exponent � in the Gamma and Beta distributions dis-
cussed in this section. Such calculations are currently in
progress.

VI. CONCLUSIONS

Poisson-Voronoi �PV� space tessellations and transforma-
tions are found in many different systems concerning biology
�28�, geology �14�, chemistry �29,30�, metallurgy �31�, and
others. In many cases the presence of a PV structure is re-
lated to a young or initial cellular structure �24�, which sub-
sequently evolves or relaxes to a more stable structure fol-
lowing the particular dynamics of the system. The analytical
knowledge of the initial distribution of sizes or other geomet-
ric characteristics of the domains, such as the number of
vertices and edges or the boundary area, may be of great
interest for the mathematical modeling of these systems.

In this article, the geometric configuration generated dur-
ing a PV transformation of arbitrary dimensionality has been
described in terms of populations of domains with a given
number k of extended collisions. It has been found that for
these k populations the probability distribution of any geo-
metric property is time invariant; only their relative amount
changes along the growth of the structure with a well defined
probability Tk�t�. This can be applied to compute the tempo-
ral evolution of the overall probability density function of
any geometric property of the domain structure. This devel-
opment, that was previously applied to a two-dimensional
transformation, has been extended and generalized here to
one and three dimensions. In the one-dimensional case, the
development gives an explicit solution and the results previ-
ously obtained by Schulze �17� are reproduced. In the three-
dimensional case, the temporal evolution of the domain size
and free boundary distributions can be analytically calculated
for the first time and general expressions for extending the
calculation to other domain characteristics have been pre-
sented.

The results presented here give a deep and accurate
knowledge of the geometric structure during a PV transfor-
mation; this enables the study of properties and spatial cor-
relations in partially occupied systems originated in nucle-
ation and growth processes. Moreover, the application of the
present general method to the D=1 case has allowed us to
perform a direct comparison between the explicit expressions
obtained for D=1 and the numerical results computed for
D�1. This gives some hints to the explicit form of the prob-
ability functions obtained for D�1 where the infinite num-
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ber of growth directions prevents, until this moment, to de-
rive explicit results. As shown in Sec. V, if explicit general
expressions of the time invariant size distributions could be
obtained for any D, this may lead to the theoretical proof of
the Gamma distribution of sizes observed in PV tessellations.

Finally, the validity of the KJMA equation has been
proofed for a wide range of processes with different nucle-
ation and growth laws �9,32�. Therefore, although the appli-
cation of the calculation method is restricted to a PV trans-
formation, the fact that the KJMA equation is obtained here
as a result of the time invariant geometric distributions �18�
suggests that a clever normalization of the domains may al-
low the extension of the method to transformations with
more complex nucleation and growth laws.
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APPENDIX A

Integration of Eq. �18� is clearly deduced considering cer-
tain k numbers. Let us first consider k=1, in such case the
integration reduces to the variable change

g1�s�ds = �
l1=0

1 ���s −
1 + l1

2
	�dl1 = 2H�s −

1

2
	 , �A1�

where the fact that 0� l1�1 and then 1
2 �s�1 leads to the

heaviside step function. Now, considering k=2 we have

g2�s�ds = 2�
l1=0

1 �
l2=l1

1 ��1

2
	��s −

1 + l1

2
	

+ �1

2
	��s −

l1 + l2

2
	�dl2dl1 �A2�

the integration of the two terms inside the brakets, taking
into account the integration limits of l1 and l2, results in

g2�s�ds = �4�1 − s�H�s −
1

2
	� + �2�1 − s�H�s −

1

2
	

+ 2sH�1

2
− s	� = 6�1 − s�H�s −

1

2
	 + 2sH�1

2
− s	 .

�A3�

Proceeding likewise for larger k numbers we obtain

g3�s�ds = 12�1 − s�2H�s −
1

2
	 + 6s�1 − s�H�1

2
− s	 ,

g4�s�ds = 20�1 − s�3H�s −
1

2
	 + 12s�1 − s�2H�1

2
− s	, . . . ,

gk�s�ds = k�k + 1��1 − s�k−1H�s −
1

2
	

+ k�k − 1�s�1 − s�k−2H�1

2
− s	 , �A4�

which is the result in Eq. �19�.

APPENDIX B

In order to calculate the mean normalized size of a do-
main with k extended collisions let us consider a set of col-
lision times �li� �i=1, . . . ,k� and a spherical shell at a nor-
malized distance r from the domain origin. The fraction of
this shell not occupied by a particular collision at li is

c�li,r� = � �1 + li/r�
2

for r � li,

1 for r � li.
 �B1�

Figure 13 shows a schematic view of a domain with a colli-
sion at li and a domain shell �dashed line� at distance r. The
fraction of domain shell not occupied by the ith collision is
c=

1+li

2 at distance r=1 and c=1 at distance r= li.
As any angular position of the surrounding domains is

equiprobable, then the average fraction of this shell not oc-
cupied by any of the k extended collisions is given by

b̄k��li�,r� = �
i=1

k

c�li,r� �B2�

and the mean value over all the possible configurations �li� is
obtained to be

b̄k�r� = k!�
l1=0

1

¯ �
lk=lk−1

1

b̄k��li�,r��
i=1

k

li
2dli = �8 − r3

8
	k

.

�B3�

The derivation of this result can be more easily illustrated
considering small k values. For k=1 it is clear that

b̄1�r� = �
l1=0

r �1 + l1/r�
2

l1
2dl1 + �

l1=r

1

l1
2dl1 =

8 − r3

8
. �B4�

For k=2 the integration must be performed taking into ac-
count that l1� l2, this results in the following integration:

O Oi

1

li li

r

FIG. 13. Sketch of a domain with a collision at li.
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b̄2�r� = 2!��
l1=0

r ��
l2=l1

r �1 + l1/r�
2

�1 + l2/r�
2

l2
2dl2

+ �
l2=r

1 �1 + l1/r�
2

l2
2dl2	l1

2dl1 + �
l1=r

1 �
l2=l1

1

l2
2l1

2dl2dl1�
= �8 − r3

8
	2

. �B5�

The result in Eq. �B3� is obtained by induction proceeding
likewise for larger k values.

Therefore, the mean normalized size of a domain with k
extended collisions, that is the mean value s̄k=�0

1sgk
S�s�ds of

the time invariant size probability density functions, can be
calculated giving

s̄k = 3�
0

1

b̄k�r�r2dr =
8

k + 1
�1 −

7k+1

8k+1	 . �B6�
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